Balanced Ero1 activation and inactivation establishes ER redox homeostasis
نویسندگان
چکیده
منابع مشابه
Balanced Ero1 activation and inactivation establishes ER redox homeostasis
The endoplasmic reticulum (ER) provides an environment optimized for oxidative protein folding through the action of Ero1p, which generates disulfide bonds, and Pdi1p, which receives disulfide bonds from Ero1p and transfers them to substrate proteins. Feedback regulation of Ero1p through reduction and oxidation of regulatory bonds within Ero1p is essential for maintaining the proper redox balan...
متن کاملEro1 and redox homeostasis in the endoplasmic reticulum.
Living cells must be able to respond to physiological and environmental fluctuations that threaten cell function and viability. A cellular event prone to disruption by a wide variety of internal and external perturbations is protein folding. To ensure protein folding can proceed under a range of conditions, the cell has evolved transcriptional, translational, and posttranslational signaling pat...
متن کاملModulation of Cellular Disulfide-Bond Formation and the ER Redox Environment by Feedback Regulation of Ero1
Introduction of disulfide bonds into proteins entering the secretory pathway is catalyzed by Ero1p, which generates disulfide bonds de novo, and Pdi1p, which transfers disulfides to substrate proteins. A sufficiently oxidizing environment must be maintained in the endoplasmic reticulum (ER) to allow for disulfide formation, but a pool of reduced thiols is needed for isomerization of incorrectly...
متن کاملER homeostasis and autophagy
The endoplasmic reticulum (ER) is a key site for lipid biosynthesis and folding of nascent transmembrane and secretory proteins. These processes are maintained by careful homeostatic control of the environment within the ER lumen. Signalling sensors within the ER detect perturbations within the lumen (ER stress) and employ downstream signalling cascades that engage effector mechanisms to restor...
متن کاملSEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity.
Selenoprotein N (SEPN1) is a broadly expressed resident protein of the endoplasmic reticulum (ER) whose loss-of-function inexplicably leads to human muscle disease. We found that SEPN1 levels parallel those of endoplamic reticulum oxidoreductin 1 (ERO1), an ER protein thiol oxidase, and that SEPN1's redox activity defends the ER from ERO1-generated peroxides. Moreover, we have defined the redox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Biology
سال: 2012
ISSN: 1540-8140,0021-9525
DOI: 10.1083/jcb.201110090